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1. INTRODUCTION

_Many forecasters used hydrology models with cli-
matology and the now-discontinued Monthly and Sea-
sonal Weather Outlook to make outlooks of basin water
supplies. The new Climate Outlook of the National
Weather Service (NWS) estimates temperature and
precipitation probabilities for multiple extended lead
times and offers an opportunity to improve water supply
forecasts. We developed a system to use the new Cli-
mate Outlook multiple probabilities to calculate appro-
priate weighting factors for historical climate scenarios.
We describe here the new Climate Outlook and its use
with hydrology models to make probabilistic outlooks.
We derive statistics that use the weights determined
from the Climate Outlook and we formulate and solve
an optimization for finding the weights. We illustrate
with an example and discuss the implications.

2. MAKING PROBABILISTIC OUTLOOKS

Beginning with the January 1995 outlook, the NWS
Climate Prediction Center provides each month a one-
month outlook for the next month and 13 three-month
outlooks, going into the future in overlapping fashion in .
one-month steps. Each outlook estimates probabilities
of average air temperature and total precipitation falling
within preselected value ranges. The value ranges
(“low,” “normal,” and “high”) are defined as the lower,
middle, and upper thirds of observations over the period
1961-90 for each variable. The climate outlooks pre-
sume that one of only four possibilities exists for the
probabilities for each variable: 1) probability of being in
the high range exceeds one third and probability of be-
ing in the low range is reduced accordingly (it remains
at one third for the normal range), referred to asbeing
“above normal,” 2) probability of being in the normal
range exceeds one third and probabilities of being in
the low and high ranges are reduced accordingly and
are equal, referred to as being “normal,” 3) probability of
being in the low range exceeds one third and probability
of being in the high range is reduced aocordlngly (it
remains.at one third for the normal range), referred to..
as being “below normal,” or 4) skill is insufficient to
make a forecast and so probabilities of one-third in
each range are used, referred to a.s cllmaloiogicar'
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Users of these climate outlooks can interpret the
forecast probabilities in terms of the impacts on them-
selves through “operational hydrology” approaches.
Some operational hydrology approaches consider his-
torical meteorology as possibilities for the future by
segmenting the historical record and using each seg-
ment with models to simulate a hydrological possibility
for the future. Each segment of the historical record
then has associated time series of meteorological and
hydrological variables, representing a possible

“scenario” for the future. The approach then can con-
sider the resulting set of possible future scenarios as a
statistical sample and infer probabilities and other par-
ameters associated with both meteorology and hydrol-
ogy through statistical estimation from this sample
(Croley, 1993; Day, 1985). Other operational hydrology
approaches use time series models of the historical
data to generate the “sample.” This increases the pre-
cision of the resulting statistical estimates, since large
samples can be generated, but not the accuracy. Use
of the historical record to directly build a sample for
statistical estimation avoids the loss of representation
consequent with the use of time series models, but re-
quires a sufficiently large historical record.

The operational hydrology approach uses the tools
of statistical sampling as if the set of possible'future
scenarios were a single “random sample” (i.e., scenar-
ios are independent of each other and equally likely).
This means that the relative frequencies of selected
events are fixed at values different (generally) than
those specified in climate outlooks. Only by restructur-
ing the set of possible future scenarios can we obtain
relative frequencies of selected events that match cli-
mate outlooks. This restructuring violates the assump-
tion of independent and equally likely scenarios (no
random sample) from the point of view of the historical
record (“apriori” information). However, the restructured
set can be viewed as a random sample (“posterior” in-
formation) of scenarios conditioned on climate outlooks.
There are many methods for restructuring the set of
possible future scenarios (Croiey. 1993; Day. 1985;:

Ingram et al., 1995). ; g SRR

3. BUILDING A STRUCTURED SET—
“In bmld' ng an operanonal hydmlogy set of possib!e

and other paran'ieters associated with various meteoro- -
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a structured set that, when treated as a statistical sam-
ple, guarantees that probability estimates for certain
variables match climate outlooks. That is, we can'build
a structured set of possible scenarios that gives relative
frequencies of average air temperature and total pre-
cipitation (over various times in the scenarios) satisfying
the apriori settings of the climate outlooks. We can
arbitrarily construct a very large structured set of size N
by adding (duplicating) each of the available scenarios
(in the original set of n possible future scenarios); each
scenario numbered i, (i=1,.
By judiciously choosing these duplication numbers, (r;,
ry, ..., ), it is possible to force the relative frequency of
any arbitrarily-defined “group” of scenarios in the struc-
tured set to any desired value. For example, suppose
only five of 50 (10%) twelve-month scenarios beginning
in June have an average June air temperature exceed-
ing 30°C, and our apriori setting (from a climate outiook)
for this exceedance is 20%. We could repeat each of
these five scenarios 9 times and repeat the other 45
scenarios 4 times to build a structured set. This struc-
tured set of size 225 (= 5 x 9 + 45 x 4) would then have
a relative frequency of 20% of average June air tem-
perature exceeding 30°C (5 x 9/225 = 0.2). For suffi-
ciently large N, we can approximate apriori settings at
any precision by using integer-valued duplication num-
bers, r,. Note also:

n =N (1)
1

By treating the N scenarios in the very large struc-
tured set as a statistical sample, we can estimate prob-
abilities and calculate other parameters for all variables.
In particular, consider any variable X (either historical
meteorological or simulated hydrological); e.g., X might
be July-August-September total precipitation, end-of-
August soil moisture storage, lake surface temperature
on day 55, or average June air temperature. We de-
note the “event” that a variable X is less than or equal to
a value x as {X < x} and the probability of this event as
P[X < x]. This probability is estimated, when consider-
ing the very large structured set as a statistical sample,
by the “relative frequency” of the event in the structured
set. The relative frequency of event {X < x} is just the
number of scenarios in wh:ch the event occurs divided
by the set size N:

v

whera P[ ] clenotes a probabllaty estlmate. and xt_

the value of variable X for the ¥ scenario in the very
large structured set of N' soenanos [Read the set nota-

tion in (2) as “Qis all valuesdlksuch that xt < x7
Actually, there are only n different values of X (=,
+ s 1) since these n values were duplicated, each

i Ma

Hxss axfldsl @

i=1

..;:n) is duplicated r, times.

by a number, r;, to create the N values in the very Iarge
structured set. We can rewrite (2) in terms of the origi-
nal set of possible future scenarios, for any variable X: -
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Plx<i] = S Q = {i|x <4} @)
Furthermore, we can write other estimators _

(defined over the large structured set of scenarios as if

it was a statistical sample) in terms of the original set.

Consider the y-probability quantile ior vanable % §r, itis

defined by:

Plxs<g] =7 @

The y-probability quantile, £, is estimated, when con-
sidering the structured set as a statistical sample, by

~ the m® order statistic, Y , where m = yN. Order all

values of X in the very large structured set (x;'f skl
..., N) from smallest to largest to define the order statis-
tics (y¥ ,m=1, ..., N). The probability estimate is then

ﬁ[X < y,":] = %. m=1,.. N (5)

where yY = x,’}m} and k(m) is the number of the value

in the structured set corresponding to the m® order.
[For example, if the third value in the structured set,

x, was the largest (y§ = x{'), then k(N) = 3]. Al
tematively, (5) can be written as follows.

A2
I=1 N
In terms of order statistics for the original set

(¥j. j =L ..., n), there are ;. identical values of

yj inthe very large structured set where i(j) is de-
fined similarly to k(m) but for the original set in which
j=1 ..,n,andyj = :.'U) Equations (5) and (6)

may be rewritten in terms of the ongmalset otpasmble
future scenarios (for any variable X)

Plx < 5] = P[X < ;m] .

P[x s sl = me1l . N (6)
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Likemse, 1he mean and variance of variable X over
the structured set, ¥ and §° reBPGCti\fely ‘become, in
terrns of the  original set:

X =
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nawnt:ng (3), (7), and (8), June 1995 Q’tmare Outlook; there is a one-month June

_Bxss = Ly,
,a[jr < "-’U)] Pele 7 i“':m- i in (12) are redundant with the rest of (12) because rela-
: "3 ' ; ©) tive fraquenctas sum to unrty
X —I-Zw; x! P[T <t 0.333]
n

= P[f‘o.l;jg < T S 730667]
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2= L3 - 3) 3 R

' . g=lLi14 (190
where : P[Qg < 9,,&:_133]

wp = (10) + P [93.0.333 <Q < 03.0.66?]

n
"N-r:‘
Note that + P [Qg > 93.0.667]

i“’f g (11) Since relative frequencies sum to unity, there are four
pr independent settings in (12) for each of the 14 climate
j outlooks for a total of 56, if all outlooks are used.

and if all w; = 1, then (9) gives contemporary (unstruc-

tured) estimates from the original set treated as a sta- Rewriting (12) and (13) in light of the first line of (9),

tistical sample. Other statistics can be similarly derived.

ZW'. = axn, ,4‘ = {l | IS-" > 13'0-667}' g l....,l4

4. CONSIDERING MULTIPLE OUTLOOKS ied,

Now consider the case of multiple apriori settings Z“’" wlgtt, o Byom {" | tg.i < 73-0-333}- g =1l..14
(from a climate outlook) to which to match relative fre- el
quencies. For example, consider the settings from the - Bl > i &
new NWS Climate Prediction Center Climate Outlook: l.gw‘ 5o fa {l | 95.i 3.0.667}- kot ezt
P[T‘ . 13.0.667] = a‘ wa = dgl‘l, D‘ = {l I q"‘ < 98-0-333}‘ .4 =‘1,.... 14
- ieD,
P[TS < 13.0_333] = b: u
- w; = n (14)
P[fg.o._-”; < T‘ 5 T‘.o_m] 1 - ag = b‘ E J
P[Q‘ >0, o.m] = ¢ where 1,; and g,; are average air temperature and total

precipitation, respectively, over period g of scenario .

P[Qg <6 3'0333] = d, "~ Alternatively, (14) can be written as follows.
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where a;; has the value of 0 or 1 corresponding to th
: exclusion or inclusion, respectively, of each variable in’
where T, and 0, are average air temperalure and total  the above sets, and ¢, corresponds to the climate out-
precipitation, respectively, over period g (g = lcome- = ook relative frequency settings specified in (12):
sponds to a one-month period andg=2,.. orre- . - b Vo Bl
sponds to 13 successive ovedappﬁ'lg three-month

ods), f,,rand 6, -are, respectively, temperatureand
precuprlatlon referenoe rprobablhty quantiles for penod
& and (a,, b, ¢, and d,, g =1, ..., 14) are the outlook
settings. ' By definition, lha raference y-probabi
quantiles are estimated from the 1961-90° historical rec-
ord for each period g. To |{Iustrate (12) consider the




Ordinarily, all of the Climate Prediction Center cli-
mate outlooks may not be used, in whlch case simply
write (15) as

n
Eak‘iw,- = &, k = 1, ey MM (17)
i=l
where m < 57, and the appropriate equations, corre-
sponding to the unused outlooks, are omitted. We must
solve (17) simultaneously to find the weights.

Generally, m # n and some of the equations may be
either redundant or non-intersecting with the rest and
must be eliminated. (If m > n, then m - n of the equa-
tions must be either redundant or non-intersecting. This
corresponds to not being able to simultaneously satisfy
all climate outlook information with fewer scenarios than
there are outlook boundary conditions.) Selection of
some for elimination is facilitated by assigning each
equation in (17) a priority reflecting its importance to the
user. [The highest priority is given to the equation in
(17) corresponding to the last line of (14), guaranteeing
that all relative frequencies sum to unity.] Each equa-
tion, in priority order starting with the next-to-highest
priority, is compared to the set of all higher-priority
equations and eliminated if it is redundant or does not
intersect the set. By starting with the higher priorities,
we ensure that each equation is compared with a
known valid set of equations, and that we keep higher-
priority equations in preference to lower-priority equa-
tions. Thus we can always reduce (17) so that m < n. If
m = n, then (17) can be solved via Gauss-Jordan elimi-
nation as a system of linear equations for the weights,
w;, since the equations are now independent and inter-
secting (in n-space). Else, m <n, and (17) consists of
the remaining independent intersecting equations.

There are multiple solutions to (17) for m < n, and
the identification of the “best” set of weights requires the
specification of a measure for comparing the solutions.
One such measure is the deviation of weights from
unity. Solutions of (17) giving smaller values of this
measure can be judged “better” than those that do not
(and the_resulting very large structured set of scenarios
is more similar to the original set of scenarios in this
sense). -We can formulate an optimization problem to

‘minimize this measure in selecting a solution to (17):

min Z(w; - l)

i=l
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i=1

By defining the “Lagrangian” for this problem (H|Ilwer and

Lleberman, 1969),

II=I k=1 i=l1

(18) ..

(where A = the unit penalty of violating the K constraint
in the optimization) and by setting the first derivatives of
the Lagrangian with respect to each fvariable” to zero,

m ; 2
._é'..l.'_= w; -1)—2/1*0“ =0, =L Laan
Iw; k=l ' ik 20)

=l

we have a set of necessary but not sufficient conditions
for the problem of (18). Equations (20) are linear and

" may be solved via the Gauss-Jordan method of elimi-

nation. Sufficiency may be checked by inspection of
the solution space in the vicinity of the solution.

The solution of (18), may give positive, zero, or
negative weights, but only non-negative weights make
physical sense and we must further constrain the opti-
mization to non-negative weights. This can be done by -
introducing non-negativity inequality constraints into
(18), (19), and (20). These additional equations would
require enumeration of all “zero points” or “roots” of (20)
(a root is a solution with zero-valued weights). How-
ever, this is impractical since it can involve the inspec-
tion of many roots [e.g., for n = 50, there are 2% - |
roots (> 10")]. Furthermore, non-negativity constraints
can result in infeasibility (there is no solution). In this
case, additional lowest-priority equations must be elimi-
nated from (17) to allow a non-negative solution. The
following two methods, portrayed in Figure 1, provide
systematic procedures for finding non-negative weights
through elimination of lowest-priority equations. They

Method I: Strictly Positive Weights
' (Uunmnm Series)




also avoid direct use of non-negativity constraints in
(18) thus avoiding inspection of the large number of

roots that can resuit. The first method guarantees that
o _on!y ﬂﬂgﬂx positive weights will result; this means that

all possﬁ:le future scenarios are used (no scenario is
weighted by zero and effectively eliminated) in estimat-
ing probabilities and other parameters. Altematively, if
we are willing to disallow some of the possible future

‘scenarios (allow zero-valued weights), the second

method satisfies more of the apriori settings [more of
the equations in (17)] in the event of a negative solu- -
tion. The reduction of (20) with non-negativity con- -
straints is further described elsewhere (Croley, 1995).

5. MULTIPLE OUTLOOKS EXAMPLE

Consider the following example. GLERL's hydrol-
ogy models are to be used to estimate the 12-month
probabilistic outlook of net basin supply for Lake Supe-
rior beginning June 1995 by using the NWS Climate
Prediction Center Climate Outlook for June 1995. (Net
basin supply is the algebraic sum of overlake precipita-
tion, lake evaporation, and basin runoff to the lake.)
The outlook will be made by identifying all 12-month
meteorological time series that start in June from the
available historical record of 1948-93; there are 45 such
time series for each meteorological variable. The time
series for all meteorological variables will be used in
simulations with GLERL's hydrology models and current
initial conditions to estimate the 45 associated time se-
ries for each hydrological variable. Each set of histori-
cal meteorological and associated hydrological time
series, corresponding to each segment of the historical
record, represent a possible future scenario. The 45
scenarios will be used as a statistical sample in an op-
erational hydrology approach to make the probabilistic
outlook. We will incorporate the Climate Prediction
Center Climate Outlook by using selected period out-
look settings as boundary conditions in the determina-
tion of weights to apply to our scenario set. We use
these weights, through estimates from (9), to make our
probabilistic outlook. '

We must begin by abstracting historical quantiles

of air temperature and precipitation for the Lake Supe-

rior basin; these are presented in Table 1 forthe peri-"

ods of interest in making the June outlook. These were -

estimated from the 1961-90 period in accordance with

definitions provided by the Climate Prediction Center for

use of their climate outlooks. These quantiles are the -

basis for interpretation of the C!tmate Predlcilon Cen- i
. ter's climate outlooks.:: g it

'i‘ﬁe NWS Cllmate P_l'GdlCllOl"l Center Cftmare Out-
look for June 1995-(made 18 May 1995) over the Lake

~ Superior Basin is given in Table 2 in columns two and
three. They are Intarpreted in accordance with specifi- -

cations of the Climate Prediction Center [and as de-

Table 1. Metaorologlcal Quantiles on Lake Superior
- Basin® for Selected Periods.
Period, " Average Temperature Total Precipitation

g "% Quantiles Quantiles
“ 0 Tg.0333 Tg, 0.667 g, 0.333 6y, 0.667
(°C) (°C) (mm) (mm)
Jun 13.38 14.43 69 106
JJA 15.18 16.29 242 295
JAS 14.49 e12 240 299
ASO 10.32 11.18 253 282
SON 4.08 5.02 206 247
OND  -3.40 -2.09 178 216
NDJ  '-10.30 -9.27 157 190
DJF -14.19 -12.71 135 151
JFM  -12.68 -10.75 121 135
FMA -6.86 -4.52 123 146
MAM 0.88 2.13 154 177
AMJ 8.03 8.55 197 230
MJJ 13.04 13.51 234 267

*Estimated from 1961-90 daily data over the Lake Su-
perior Basin from 230 meteorological stations aver-
aged spatially.

scribed in the section on Making Probabilistic Outlooks
and in the previous section; see (12)], to construct the

Table 2. NWS Climate Prediction Center June 1995
Climate Outlook Probabilities®, %.

Period, P Po® Temperature Precipitation
g Probabilities®  Probabilities®

low norm. high low norm. high

JuR'es Oc Oc .33 .33 83983 .83 23
JIABS Oc UOc .33 .32 .33 338333

A

JAS’95|2n’0c|32“35“32| 33 33 38

ASQ95. 0c:00ic - 33"337. 83 ' 83" ' 33 33

soN'es [3b] oc [36][33][30] 33 33 33

OND'S5S 0c Oc 33 33 33 33 33 33

NDJ95 Oc Oc 33 33 33 33 33 33
DJF9s [1a] oc [32][33][34] 33 33 a3
JAmos [2a][lod[31][33][ 35| [43][33][23]
FMA'96 [1a] oc [32][33][34] 33 33 33
_MAM96[3a] oc [30][33][36] a3 33 33
AMJ'96 Oc Oc 33 33 33 33 33 a3
MJJ'96 Oc Oc 33 33 33 33 33 33
JJA'96. 0c Oc 33 33 33 33 33 33

“For the Lake Superior basin; probabilities expressed as " -

- percentages do not appear to sum to unity because of :

-the two-digit round-off used here. '

__®Probability (Prand Pq designate temperature and pra- i

cipitation probabilities, respectively) in excess of 33% in ‘
low interval (below normal), in mid interval (normal), or

- in high interval (above normal); ‘no forecast” is mdl--

cated by “0 ¢” (climatological). i
“Probabilities over the Climate Predicllon Canter's cor-
responding interval definitions.
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Table 3. Boundary Condition Equations (17) for June 1995 Outlook on Lake Superior.

Period, g* k° Interval® Inclusion in interval, a; ;, i=1, ..., 45° S5 e ar

JAS'95 2 . (wosst =) 110011010001110100100110010000000001000111010 0.32x 45

JAS'95 3 (-oy,;rg_ﬁm) 001100101000001001010001101001010010010000001 0.32x45

SON'95 4 (Tkoe67,%0) 100001101010111100001011010001000001100000000 0.30x45

SON'95 5 (o, Tkosss) 000100000001000001100000101010011000011001010 0.36 x 45
6
7
8
9

DJF'95 (Tkoe67,9) 100111110101100101001000001000011010001101111  0.34 x 45
DJF'95 (-e=, Tko333) 000000001010011010100001010011100100000000000 0.32x45
JFM'96 (7k0e67,%0) 000111000100100100000000100010001011111001111 0.35x45
JFM'96 (<o, Tko.33s) 010000000010001010000101010001100100000000000 0.31x45
JFM'96 10 (6kose7, ) 111011100000000011100011001110100000000110000 0.23 x45
JFM'S6 11 (-e°, Bko333) 000000011111101000010100000001000011011000111 0.43 x 45
FMA'96 12 (Tkoss7,=) 000101000100100000000000100010001011111001111  0.34x 45
FMA'96 18 (-ee, Tk0333) 010000000000000010100101010001100000000010000 0.32x45
MAM'96 14 (Tkoses7,) 001010100100010000010000100010001000111101111  0.36 x45
MAM'96 15 (-e0, Tko333) 010001010001000010100111010000100000000010000 0.30x45
Entire 1 TT111 111111 1111111111111 11111111111 1111111111 1.00x45

Panod as selected (highlighted) in Table 2.

®Period renumbered by priority (1 = highest) as in (17).

“Interval as defined in Table 1.

“Coefficients in (17) defined for each selected period, k, of the climate outlook, and for each scenario, j, in the his-

torical record.
probabilities associated with the reference quantiles in ios to construct 15 equations represented by (17) in
Table 1; these are given in columns four through nine in Table 3. Table 4 presents the solution of these equa-
Table 2. Highlighted entries in Table 2 denote outlook tions, found by minimizing the deviation of weights with
probabilities designated as significant by the Climate unity, as in (18). While all 45 scenarios are used (all
Prediction Center, who suggest that the remainder be weights are strictly positive), not all of the selected apri-
estimated from climatology since they have insufficient ori climate settings can be used. The temperature
skill to make outlooks in those cases. probability settings for JAS, SON, DJF, and JFM were

used while the temperature probability settings for FMA
The highlighted entries in Table 2 are used arbitrar- and MAM and the precipitation probability setting for
ily, in priority of their appearance, to make the outlook. JFM were unused. We could use all 3even apriori cli-
These seven outlook settings and the reference quan- mate settings if we allowed zero-valued weights. This is

tiles in Table 1 are used with inspection of all 45 scenar-  done in Table 5§ where the scenarios starting in June
1948, 1952, 1953, 1954, 1970, and 1987 are unused.

: L ol ' Croley (1995) discusses these alternatives further.
Table 4. Outlook Weights: All Historical Time Series".
Year Weight Year Weight Year Weight
1948 0.444378 1963 0.259718 1978 1.527387 Table 5. Outlook Weights: All Apriori Climate Settings®.
1949 1.659873 1964 1.527387 1979 1.112034 Year Weight Year Weight Year Weight
1950 1.089694 1965 1.112034 1980 1.459070 1948 0 1963 0.450000 1978 1.269962
1951 0.927374 1966 1.183255 1981 1.527387 1949 1.060486 1964 1.269962 1979 1.919873

1952 -0.150880— 1967 1.089694 1982 0.157130 1950 0.312190 1965 '0.424136 1980 1.813411
1953 0.259718 1968 0.982324 1983 1.007623 1951 1.008031 - 1966 1.808557 1981 1.279712

1954 0.450628 1969 1.659873 1984 1.545569 1952 0 1967 1.879379 1982 0.171944
1955 0.335539 1970 1.192282 1985 1.675279 18953 0 1968 1.912046 1983 0.911242
1956 0.528100 1971 1.104530 1986 1.459070 1954 0 1969 2.627675 1984 1.795797
1957 0.688826 1972 1.675279 1987 0.335539 1955 0.357372 1970 0 1985 1.875076

1958 1.636225 1973 1.098279 1988 1.083444 . 1956 1.137376 1971 0.379306 1986 1.884862 :
1959 1.105783 1974 1.112034 1989 0.921124 1957 0.977323 1972 1.803624 1987 - —0- - -
1960 0.259718 1975 1.621390 1990 0.688826 1958 1.355692 1973 1.724416 1988 _1 737354 23
1961 0.521850 1976 1.536542 1991 0.921124 1959 1.264911 1974 0.424136 19890767599
1962 1.104530 1977 1.104530 1992 0.157130 1960 0.025845 1975 1.297178 1990 0.977323
- *Solution of (17) with Table 3 values using all historical 1961 0.825493 1976 0.366735 1991 0.839051
data years and apriori settings for JAS, SON, DJF, and 1962 0.460508 1977 2.522282 19392 0.082140
JFM temperature probabilities; settings for FMA and *Solution of (17) with Table 3 values using all apriori
' MAM temperature and JFM precipitation are unused. - - climate outlook settings highlighted in Table 2.
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* Finally, as an example for one hydrological vari-
able, the probabilistic outlook for net basin supply
(NBS), over the twelve months from June 1995 through

May 1996, is given in Table 6. There were 45 values of

monthly NBS, corresponding to the 45 scenarios used
in the simulation, for each of the twelve months. Each
value was multiplied by its respective weight from Table
5, as in (9), to compute various statistics for the prob-
abilistic outlook each month. Selected quantiles from

. the forecast NBS probability distribution and the mean
and standard deviation for each month of the outlook
are displayed in Table 6. Since the weights of Table 5 .
were used, the probabilistic outlook in Table 6 repre-
-sents use of all selected apriori climate outlook settings.

6. SUMMARY

The operational hydrology approach described
herein uses historical information while preserving
many of the long-term meteorological probability out-
looks provided by NWS's Climate Prediction Center.
Other approaches may severely limit the use of histori-
cal data to be compatible with climate outlooks or use
all historical data only by ignoring these outlooks. The
use of a hypothetical very large structured set of scenar-
ios to estimate hydrological outlook probabilities corre-
sponds to the use of the weighted original set of possi-
ble future scenarios estimated from the historical rec-
ord. (Each scenario consists of an actual segment of
the historical record and its associated hydrological
transformation made with appropriate models.) The
building of this hypothetical very large structured set is
an arbitrary concept that was useful in defining the
weights. The National Weather Service is now consid-
ering weighting methods for their Extended Streamflow
Prediction operational hydrology approach (Day, 1985)
that couple historical time series of precipitation with
precipitation forecasts (Ingram et al., 1995).

Still other approaches use time series models, fit to
historical data, to generate a large sample, increasing
precision but not accuracy in the resulting statistical
estimates. Direct use of the historical record to build a
sample avoids the loss of representation consequent
with time series models. In addition, it may not be clear

how to modify time series models to agree with climatic ——

outlooks and still be representative of the underlying
behavior originally captured in the time series models.
Nevertheless, if time series models are used in building
the sample, weighting of this sample, in the manner
described herein, to agree with climatic outlooks is
stralghtfomrard and still could be used.

The detenmnatlon of these weights mvolves sev-"
eral choices also made arbitrarily herein. For exampie
the weights could be determined directly from multiple

climate outlooks, as exemplified earlier for a single cli-

mate outlook (average June air temperature) Thls

Table 6. June 1995 Lake Superior Outlook of Monthly
Total Net Basin Supply (mm)".
Quantiles

Month Mean Std.

5% 20% 50% 80% 95% Dev.

Jun'95 - 99 108 149 167 188 141 30
Jul'95 80 101 114 142 166 120 26
Aug'9s 44 82 95 131 151 102 3§
Sep'95 5 39 65 109 157 75 47
eiies 8. 23 .46 . 11493 49° 30
Nov'ss -42 -14 S gis 0 BD 10 33
Dec'95 -59 -39 -28 -15 2. 5208 18
Jan'96 -65 -40 -23 -1§ 8 25 20
Feb'96 -37 -22 -14 13 26 6 28

Mar '96 ..-25 5. .21 59 92 34 86

Aer 96, .62 o8l 120 3581 73, 121.° 32
May'96 100 127 159 192 234 162 42

®Forecast non-exceedance quantiles, mean, and stan-
dard deviation, are expressed as over-lake depths.
The quantiles, mean, and standard deviation are com-
puted from the weights in Table 5. This hydrological
outlook corresponds to the Climate Prediction Center
Climate Outlook for June 1995, with probability set-
tings on temperature for periods JAS, SON, DJF, JFM,
FMA, and MAM, and on precipitation for JFM.

would involve restrictions on the multiple climate out-
looks not considered here. The formulation of an opti-
mization problem, used herein, allows for a more gen-
eral approach in determining these weights in the face
of multiple outlooks. However, this formulation also
involves arbitrary choices, the largest of which is the
selection of a relevant objective function. Other meas-
ures of relevance of the weights to a goal are possible
and require reformulation of the solution methodology.

An important advantage associated with the com-
putation of a weighted sample in the operational hydrol-
ogy approach described herein is the independence of
the weights and the hydrology models. After model
simulations are made to build a set of possible future
scenarios for analysis, several probabilistic outlooks
can be generated with weights corresponding to the use
of different climate outlooks, different methods of con-
sidering the climate outlooks, and alternate selections

of just which of the 14 outlooks to use that are available -
each month.” In making these alternate analyses and ;=
weights (re)computations, it is unnecessary to redo the -

model simulations to rebuild the set. This is a real sav-

ings when the model simulations are extensive, asis ' -

the case with Great Lakes hydrological outlooks. This
also enables efficient consideration of other ways of
using the weights to make probabilistic outiooks. For

__example, our use of non-parametric statistics in (5) re-

stricts the range of any variable to that presentinthe

historical record or in their hydrological transformations.

_An altemative that does not restrict range in this man-.
- ner hypothesizes a distribution family (e.g., normal _Iog-_-

normal, log-Pearson Type lll) and estimates its mo-
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to those in (9). The detractol
is hypothesizing the family,

We built an Outlook-Setup User-Product Interface
(or “front end” to our water resources forecasting sys-
tem) as a specially-designed Windows™ application.
This allows the user to set hydrologic outiook parame-
ters and to begin the hydrological outiook. The inter-
face defines the hydrological outlook and historical-data
periods, selects the periods, probabilities, and priorities
of climate outlooks (newly available from the NWS Cli-
mate Prediction Center), and determines the method for
considering the climate outlooks in making the hydro-
logical outlook. NWS's climate outlooks can be particu-
larly cumbersome and difficult to use; but this interface
greatly clarifies and simplifies their use in making a hy-
drological outlook. It allows readily understandable
user interpretation of climate outlooks and easy user
assignment of relevant priorities.

In fact, the interface is so successful in allowing a
lay-person to utilize NWS's Climate Outlook that we
similarly built a derivative product (also a Windows™
application) to allow anyone to directly use the Climate
Outlook in their own applications. This interface makes
all computations utilizing the new climate outlooks. It
finds all necessary reference quantiles for using a cli-
mate outlook from a user-supplied file of historical daily
air temperature and precipitation, sets up all climate
outlook selections as boundary equations in (17), formu-
lates the optimization problem of (18), and performs the
sequential optimizations with either of two methods
(either by using all historical data or by maximizing use

,_féﬁaca com-
-alone FORTRAN
;of operating

of the climate outlook selection
puter code is also available as
implementation for use under a variety

systems. b
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